561 research outputs found

    Complex Networks Unveiling Spatial Patterns in Turbulence

    Get PDF
    Numerical and experimental turbulence simulations are nowadays reaching the size of the so-called big data, thus requiring refined investigative tools for appropriate statistical analyses and data mining. We present a new approach based on the complex network theory, offering a powerful framework to explore complex systems with a huge number of interacting elements. Although interest on complex networks has been increasing in the last years, few recent studies have been applied to turbulence. We propose an investigation starting from a two-point correlation for the kinetic energy of a forced isotropic field numerically solved. Among all the metrics analyzed, the degree centrality is the most significant, suggesting the formation of spatial patterns which coherently move with similar vorticity over the large eddy turnover time scale. Pattern size can be quantified through a newly-introduced parameter (i.e., average physical distance) and varies from small to intermediate scales. The network analysis allows a systematic identification of different spatial regions, providing new insights into the spatial characterization of turbulent flows. Based on present findings, the application to highly inhomogeneous flows seems promising and deserves additional future investigation.Comment: 12 pages, 7 figures, 3 table

    Stability of the electroweak ground state in the Standard Model and its extensions

    Get PDF
    We review the formalism by which the tunnelling probability of an unstable ground state can be computed in quantum field theory, with special reference to the Standard Model of electroweak interactions. We describe in some detail the approximations implicitly adopted in such calculation. Particular attention is devoted to the role of scale invariance, and to the different implications of scale-invariance violations due to quantum effects and possible new degrees of freedom. We show that new interactions characterized by a new energy scale, close to the Planck mass, do not invalidate the main conclusions about the stability of the Standard Model ground state derived in absence of such terms.Comment: 12 pages, 5 figures. To appear in Physics Letters

    Impact of atrial fibrillation on the cardiovascular system through a lumped-parameter approach

    Get PDF
    Atrial fibrillation (AF) is the most common arrhythmia affecting millions of people in the Western countries and, due to the widespread impact on the population and its medical relevance, is largely investigated in both clinical and bioengineering sciences. However, some important feedback mechanisms are still not clearly established. The present study aims at understanding the global response of the cardiovascular system during paroxysmal AF through a lumped-parameter approach, which is here performed paying particular attention to the stochastic modeling of the irregular heartbeats and the reduced contractility of the heart. AF can be here analyzed by means of a wide number of hemodynamic parameters and avoiding the presence of other pathologies, which usually accompany AF. Reduced cardiac output with correlated drop of ejection fraction and decreased amount of energy converted to work by the heart during blood pumping, as well as higher left atrial volumes and pressures are some of the most representative results aligned with the existing clinical literature and here emerging during acute AF. The present modeling, providing new insights on cardiovascular variables which are difficult to measure and rarely reported in literature, turns out to be an efficient and powerful tool for a deeper comprehension and prediction of the arrythmia impact on the whole cardiovascular system.Comment: 16 pages, 8 figures, 2 tables, Medical & Biological Engineering & Computing, 2014, Print ISSN: 0140-0118, Online ISSN: 1741-044

    Resummation prescriptions and ambiguities in SCET vs. direct QCD: Higgs production as a case study

    Get PDF
    We perform a comparison of soft-gluon resummation in SCET vs. direct QCD (dQCD), using Higgs boson production in gluon fusion as a case study, with the goal of tracing the quantitative impact of each source of difference between the two approaches. We show that saddle-point methods enable a direct quantitative comparison despite the fact that the scale which is resummed in the two approaches is not the same. As a byproduct, we put in one-to-one analytic correspondence various features of either approach: specifically, we show how the SCET method for treating the Landau pole can be implemented in dQCD, and how the resummation of the optimal partonic scale of dQCD can be implemented in SCET. We conclude that the main quantitative difference comes from power-suppressed subleading contributions, which could in fact be freely tuned in either approach, and not really characteristic of either. This conclusion holds for Higgs production in gluon fusion, but it is in fact generic for processes with similar kinematics. For Higgs production, everything else being equal, SCET resummation at NNLL in the Becher-Neubert implementation leads to essentially no enhancement of the NNLO cross-section, unlike dQCD in the standard implementation of Catani et al..Comment: 21 pages, 4 figures; final version, to be published in JHEP. Eq. 2.39 and subsequent discussion added, fig.1 and corresponding discussion added, discussion on sqrt{z} prefactor added on pag.1

    Spatial pattern formation induced by Gaussian white noise

    Get PDF
    The ability of Gaussian noise to induce ordered states in dynamical systems is here presented in an overview of the main stochastic mechanisms able to generate spatial patterns. These mechanisms involve: (i) a deterministic local dynamics term, accounting for the local rate of variation of the field variable, (ii) a noise component (additive or multiplicative) accounting for the unavoidable environmental disturbances, and (iii) a linear spatial coupling component, which provides spatial coherence and takes into account diffusion mechanisms. We investigate these dynamics using analytical tools, such as mean-field theory, linear stability analysis and structure function analysis, and use numerical simulations to confirm these analytical results.Comment: 11 pages, 8 figure

    Massive vectors and loop observables: the g−2g-2 case

    Get PDF
    We discuss the use of massive vectors for the interpretation of some recent experimental anomalies, with special attention to the muon g−2g-2. We restrict our discussion to the case where the massive vector is embedded into a spontaneously broken gauge symmetry, so that the predictions are not affected by the choice of an arbitrary energy cut-off. Extended gauge symmetries, however, typically impose strong constraints on the mass of the new vector boson and for the muon g−2g-2 they basically rule out, barring the case of abelian gauge extensions, the explanation of the discrepancy in terms of a single vector extension of the standard model. We finally comment on the use of massive vectors for BB-meson decay and di-photon anomalies.Comment: 25 pages, 1 figure. References added, to appear in JHE

    Modularity Index For The Segmentation Of Water Distribution Networks

    Full text link
    The search for suitable segmentations is a challenging issue for analysis, planning and management of water distribution networks (WDNs). In fact complex and large size hydraulic systems require the division into modules in order to simplify the analysis and the management tasks. In complex network theory, modularity index was proposed as a measure of the strength of the network division into communities. Nevertheless, modularity index needs to be revised considering the specificity of the hydraulic systems. Accordingly, the classic modularity index is firstly presented and, then, tailored and modified for WDNs. Furthermore, a multi-objective strategy for optimal segmentation is presented. The optimization framework is based on the maximization of the WDN-oriented modularity-based index versus the minimization of the cost of newly installed devices in order to segment WDNs
    • …
    corecore